On the homeotopy group of the non-orientable surface of genus three

FRANCISCO JAVIER GONZÁLEZ–ACUÑA
Universidad Nacional Autónoma de Mexico, México

JUAN MANUEL MÁRQUEZ–BOBADILLA
Universidad de Guadalajara, México

Abstract. In this note we prove that, if \(N_3 = P#P#P \), where \(P := \mathbb{R}P^2 \), then the canonical homomorphism from \(\text{Diff}(N_3) \) onto the homeotopy group \(\text{Mod}(N_3) \) has a section. To do this we first prove that \(\text{Mod}(N_3) = GL(2, \mathbb{Z}) \).

Keywords and phrases. Homeotopy group, non-orientable surface.

2000 Mathematics Subject Classification. Primary: 57M60. Secondary: 20F38.

Resumen. En esta nota probamos que, si \(N_3 = P#P#P \), donde \(P := \mathbb{R}P^2 \), entonces el homomorfismo canónico de \(\text{Diff}(N_3) \) sobre el grupo de homeotopía \(\text{Mod}(N_3) \) tiene una sección. Para hacer esto, primero probamos que \(\text{Mod}(N_3) = GL(2, \mathbb{Z}) \).

1. Introduction

If \(M \) is a closed smooth surface we denote by \(\text{Mod}(M) \) the quotient group \(\text{Diff}(M)/\text{Diff}_0(M) \) where \(\text{Diff}(M) \) is the group of all diffeomorphisms from \(M \) to \(M \) and \(\text{Diff}_0(M) \) is the normal subgroup of diffeomorphisms isotopic to the identity. We call it the homeotopy group or the extended mapping class group of \(M \).

S. Morita [9], [10] has shown that, if \(M_g \) is the closed genus \(g \) orientable surface, then the canonical epimorphism

\[\text{Diff}(M_g) \to \text{Mod}(M_g) \]

from the group of diffeomorphisms of \(M_g \) onto its extended mapping class group admits no section provided that \(g \geq 18 \).

When \(g \leq 1 \) it is easy to show that the homomorphism does have a splitting: If \(g = 0 \) then \(\text{Mod}(M_0) = \mathbb{Z}_2 \); a section is defined by sending the non-trivial element of \(\text{Mod}(M_0) \) to the antipodal map of \(S^2 \). Also, for genus one \(M_1 = \)
$\mathbb{R}^2/\mathbb{Z}^2$ and $\text{Mod}(M_1) = GL(2, \mathbb{Z})$ (cf. [11, p. 26]). The standard linear action of $GL(2, \mathbb{Z})$ on $(\mathbb{R}^2, \mathbb{Z}^2)$ defines a splitting of $\text{Diff}(M_1) \to \text{Mod}(M_1)$.

If N_k is the genus k non-orientable surface (the connected sum of k copies of P) then

$$\text{Diff}(N_k) \to \text{Mod}(N_k),$$

has a section if $k \leq 2$.

For, if $k = 1$ then $\text{Mod}(P) = 1$ (see [4]) and trivially a section exists. If $k = 2$ and we think of N_2 as $S^1 \times S^1$ with identifications $(z, w) \sim (z, -w)$, then $\text{Mod}(N_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and the image of a section is $\{ f_{\varepsilon_1, \varepsilon_2} : |\varepsilon_1| = |\varepsilon_2| = 1 \}$ where

$$f_{\varepsilon_1, \varepsilon_2}(z, w) = (z^{\varepsilon_1}, w^{\varepsilon_2})$$

(see [6], [12]).

Here we will prove that

$$\text{Diff}(N_k) \to \text{Mod}(N_k),$$

also has a section if $k = 3$.

2. Proofs

First, we will show that $\text{Mod}(N_3) = GL(2, \mathbb{Z})$.

In [2], using [3], a presentation of $\text{Mod}(N_3)$ is given and one can see that this presentation defines $GL(2, \mathbb{Z})$, (see [7]).

However we feel that this result is not well known. In here we will give a proof of the fact that $\text{Mod}(N_3) = \text{Mod}(M_1)(= GL(2, \mathbb{Z})$) using simple methods in algebraic topology.

We will work in the smooth category.

Let T_0 be a torus minus the interior of a 2–disk D. An arc α properly embedded in T_0 is trivial if there is a 2–disk in T_0 whose boundary is the union of α and an arc in ∂T_0. This is equivalent to the condition that α represent the trivial element of $H_1(T_0, \partial T_0; \mathbb{Z}_2)$. In the following lemma $\cup_{i=1}^n \alpha_i/\varphi$ will denote the quotient space of the union of arcs $\cup_{i=1}^n \alpha_i$ obtained by identifying $x \in \partial(\cup_{i=1}^n \alpha_i)$ with $\varphi(x)$.

Lemma 2.1. Let T_0 be the torus minus the interior of a 2–disk. Let $\varphi: \partial T_0 \to \partial T_0$ be a fixed point free involution. Let $\alpha_1, \ldots , \alpha_n$, with n odd, be disjoint arcs properly embedded in T_0 such that $\varphi(\cup_{i=1}^n \alpha_i) = \partial(\cup_{i=1}^m \alpha_i), \cup_{i=1}^m \alpha_i/\varphi$ is connected and $\sum_{i=1}^n |\alpha_i| = 0 \in H_1(T_0, \partial T_0; \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then at least one α_i is trivial.

Proof. Let a, b, c be the nontrivial elements of $H_1(T_0, \partial T_0; \mathbb{Z}_2)$. Let a_1, \ldots , a_p be the arcs of $\{ \alpha_1, \ldots , \alpha_n \}$ which represent a. Let b_1, \ldots , b_q those which represent b and c_1, \ldots , c_r those which represent c.

Assume no α_i is trivial, that is $|\alpha_i| \neq 0$ for all i. Then $0 = \sum_{i=1}^n |\alpha_i| = pa + bq + rc$ in $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ and $p + q + r = n$, an odd number. If one of the numbers p, q, r is even then the other two must also be even: but this contradicts the fact that n is odd. Therefore p, q, r are all odd.

Notice that for any i and any j the 0–spheres $\partial \alpha_i$ and ∂b_j are linked in ∂T_0 (meaning that both components of $\partial T_0 - \partial \alpha_i$ contain one point of ∂b_j).
Similarly ∂b_i and ∂c_k are linked, and ∂c_k and ∂a_j are linked, for any values of i, j, k. Also ∂a_i and ∂a_j are not linked ∂b_i and ∂b_j are not linked, ∂c_i and ∂c_k are not linked if i ≠ j.

This implies that after renumbering the a’s, b’s and c’s the arrangement of the points of \(\bigcup_{i=1}^{n} \partial a_i \) in \(\partial T_0 \) is: \(a_1^+, a_2^+, \ldots, a_p^+, b_1^+, b_2^+, \ldots, b_q^+, c_1^+, c_2^+, \ldots, c_r^+ \), as shown in figure 1; here \(\partial a_i = \{ a_i^+, a_i^- \} \), \(\partial b_j = \{ b_j^+, b_j^- \} \) and \(\partial c_k = \{ c_k^+, c_k^- \} \).

But then the number of components of \(\bigcup a_i / \phi \) is \(p + 1 + q + 1 + r + 1 > 1 \) (think of \(\phi \) as the antipodal involution), contradicting that \(\bigcup a_i / \phi \) is connected. Hence at least one \(a_i \) is trivial. □✓

We write \(N = N_3 \) henceforth.

Proposition 2.1. Let \(\mu \) and \(\alpha \) be simple closed curves in \(N \) representing the element of order 2 in \(H_1(N; \mathbb{Z}) \). Then \(\alpha \) is isotopic to \(\mu \).

Proof. Write \(N = T_0 \cup P_0 \), the union of a punctured torus \(T_0 \) and a Möbius band \(P_0 \), with \(T_0 \cap P_0 = \partial T_0 = \partial P_0 \). We think of \(P_0 \) as an I–bundle over the circle and denote by \(\phi : \partial T_0 \to \partial T_0 \) the fixedpoint free involution that interchanges the boundary points of each fiber.

We may assume that \(\mu \) is the image of a section of this bundle. We may also assume that \(\alpha \) intersects \(\partial T_0 \) minimally, that is, \(|\alpha' \cap \partial T_0| \geq |\alpha \cap \partial T_0| \) for any curve \(\alpha' \) ambient isotopic to \(\alpha \). We claim that \(|\alpha \cap \partial T_0| = 0 \).

Suppose \(|\alpha \cap \partial T_0| > 0 \). Then we can assume that \(\alpha \cap P_0 \) consists of \(n \) I–fibers \(f_1, \ldots, f_n \) and \(\alpha \cap T_0 \) is the union of \(n \) disjoint arcs \(\alpha_1, \ldots, \alpha_n \) properly embedded in \(T_0 \). As \(H_1(N) = H_1(P_0, \partial P_0) \oplus H_1(T_0, \partial T_0) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) and as \(\alpha \) represents the element of order two, then we must have that \(\sum \left[f_i \right] \neq 0 \) in
\[H_1(P_0, \partial P_0; \mathbb{Z}_2) \] (that is, \(n \) must be odd) and \(\sum [\alpha_i] = 0 \) in \(H_1(T_0, \partial T_0; \mathbb{Z}_2) \). By Lemma 2.1, at least one \(\alpha_i \) must be trivial and so we can isotope \(\alpha_i \) to reduce the number of components of its intersection with \(\partial T_0 \). This contradicts our minimality assumption. Hence \(|\alpha \cap \partial T_0| = 0 \) and, since \(\alpha \) is not trivial, it is isotopic to \(\mu \).

Proposition 2.2. Let \(N = T_0 \cup P_0 \) with \(T_0 \cap P_0 = \partial T_0 = \partial P_0 \). Then any diffeomorphism \(h \) of \(N \) is isotopic to one leaving \(T_0 \) and \(P_0 \) invariant.

Proof. Let \(\mu \) be the image of a section of \(P_0 \). By Proposition 2.1, \(h\mu \) is ambient isotopic to \(\mu \) so we may assume that \(h \) leaves \(\mu \) invariant. But then we can also assume that it leaves its tubular neighborhood \(P_0 \) invariant.

Theorem 2.3. The natural homomorphism
\[\psi: \text{Mod}(N) \to \text{Aut}(H_1(N)/\text{Torsion}(H_1(N)) (\cong GL(2, \mathbb{Z})) , \]
is an isomorphism.

Proof. Again write \(N = T_0 \cup P_0 \) and \(T = T_0 \cup D \). Any automorphism of \(H_1(T) \) is induced by a diffeomorphism of \(T \) which can be isotope so that the 2–disk \(D \) is invariant. Hence any automorphism of \(H_1(T_0, \partial T_0) \) is induced by a diffeomorphism of \(T_0 \). Since any diffeomorphism of \(\partial P_0 \) can be extended to a diffeomorphism of \(P_0 \) (a nice exercise), it follows that any automorphism of \(H_1(N)/\text{Torsion}(H_1(N)) \) is induced by a diffeomorphism of \(N \). Thus \(\psi \) is an epimorphism.

Suppose now that \(\psi(h) \) is the identity. By Proposition 2.2, \(h \) is isotopic to a diffeomorphism leaving \(T_0 \) invariant. Now, \(h|_{T_0} \) induces the identity on \(H_1(T_0, \partial T_0) \) and is therefore isotopic to \(id_{T_0} \) and a diffeomorphism of \(P_0 \) which is the identity on \(\partial P_0 \) is isotopic rel \(\partial \) to \(id_{P_0} \). Hence \(h \) is isotopic to \(id_N \). This proves that \(\psi \) is a monomorphism.

Theorem 2.4. The natural homomorphism \(\text{Diff}(N) \to \text{Mod}(N) \) has a section.

Proof. Let \(T = \mathbb{R}^2/\mathbb{Z}^2 \). Consider the blow up \(B(T) \) of \(T \) at the identity element \(e \) of \(T \). Recall \(B(T) = (T - \{e\}) \cup P^1 \) where \(P^1 \) is the space of one-dimensional vector subspaces of \(\mathbb{R}^2 \). The blow up \(B(T) \) is diffeomorphic to \(N \).

If \(f \) is a linear automorphism of \(\mathbb{R}^2 \) with \(f(\mathbb{Z}^2) = 2\mathbb{Z}^2 \), it induces a diffeomorphism of \(T - \{e\} \), a diffeomorphism of \(P^1 \) and a diffeomorphism of \(B(T) \) (cf.[3, Lemma 2.1]). Thus the standard linear action of \(GL(2, \mathbb{Z}) \) on \(T \) induces an action of \(GL(2, \mathbb{Z}) \) on \(B(T) \).

Hence we have a homomorphism
\[GL(2, \mathbb{Z}) \to \text{Diff}(B(T)), \]
which composed with
\[\text{Diff}(B(T)) \to \text{Mod}B(T) \xrightarrow{\cong} \text{Aut}(H_1(N)/\text{Torsion}(H_1(N)) \]
is an isomorphism.
Acknowledgements. We thank A. Verjovsky, A. Ramírez, X. Gómez-Mont, O. Calvo y V. Núñez for conversations about blowups.

References

(Recibido en mayo de 2006. Aceptado en julio de 2006)

Instituto de Matemáticas
UNAM and CIMAT
Circuito Interior S/N, Ciudad Universitaria, 04510
C.P. 3600 México D.F., México
e-mail: ficomx@yahoo.com.mx

Departamento de Matemáticas
CUCEI-Universidad de Guadalajara and CIMAT A.C.
Callejón Jalisco S/N Valenciana, 36240
A.P. 402 Guanajuanto, México
e-mail: juann@cimat.mx